Accurate segmentation of dense nanoparticles by partially discrete electron tomography.

نویسندگان

  • T Roelandts
  • K J Batenburg
  • E Biermans
  • C Kübel
  • S Bals
  • J Sijbers
چکیده

Accurate segmentation of nanoparticles within various matrix materials is a difficult problem in electron tomography. Due to artifacts related to image series acquisition and reconstruction, global thresholding of reconstructions computed by established algorithms, such as weighted backprojection or SIRT, may result in unreliable and subjective segmentations. In this paper, we introduce the Partially Discrete Algebraic Reconstruction Technique (PDART) for computing accurate segmentations of dense nanoparticles of constant composition. The particles are segmented directly by the reconstruction algorithm, while the surrounding regions are reconstructed using continuously varying gray levels. As no properties are assumed for the other compositions of the sample, the technique can be applied to any sample where dense nanoparticles must be segmented, regardless of the surrounding compositions. For both experimental and simulated data, it is shown that PDART yields significantly more accurate segmentations than those obtained by optimal global thresholding of the SIRT reconstruction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measuring porosity at the nanoscale by quantitative electron tomography.

Quantitative electron tomography is proposed to characterize porous materials at a nanoscale. To achieve reliable three-dimensional (3D) quantitative information, the influence of missing wedge artifacts and segmentation methods is investigated. We are presenting the "Discrete Algebraic Reconstruction Algorithm" as the most adequate tomography method to measure porosity at the nanoscale. It pro...

متن کامل

Pore REconstruction and Segmentation (PORES) method for improved porosity quantification of nanoporous materials.

Electron tomography is currently a versatile tool to investigate the connection between the structure and properties of nanomaterials. However, a quantitative interpretation of electron tomography results is still far from straightforward. Especially accurate quantification of pore-space is hampered by artifacts introduced in all steps of the processing chain, i.e., acquisition, reconstruction,...

متن کامل

Direct synthesis of partially ordered tetragonally structured FePt nanoparticles by polyol method for biomedical application

We report the direct soft chemical synthesis and characterization of a family of face centered cubic (fcc) and partially ordered face centered tetragonal (fct) FePt nanoparticles (NPs) suitable for biomedical applications. Both fcc and partially ordered fct-FePt NPs are synthesized by employing a simple polyol method. By using polyvinyl pyrolidone (PVP) as a stabilizer in various ratios during ...

متن کامل

Direct synthesis of partially ordered tetragonally structured FePt nanoparticles by polyol method for biomedical application

We report the direct soft chemical synthesis and characterization of a family of face centered cubic (fcc) and partially ordered face centered tetragonal (fct) FePt nanoparticles (NPs) suitable for biomedical applications. Both fcc and partially ordered fct-FePt NPs are synthesized by employing a simple polyol method. By using polyvinyl pyrolidone (PVP) as a stabilizer in various ratios during ...

متن کامل

Assumption-free morphological quantification of single anisotropic nanoparticles and aggregates.

Characterizing the morphometric parameters of noble metal nanoparticles for sensing and catalysis is a persistent challenge due to their small size and complex shape. Herein, we present an approach to determine the volume, surface area, and curvature of non-symmetric anisotropic nanoparticles using electron tomography and design-based stereology without the use of segmentation tools or modeling...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ultramicroscopy

دوره 114  شماره 

صفحات  -

تاریخ انتشار 2012